Relationships between Regeneration of Qinghai Spruce Seedlings and Soil Stoichiometry across Elevations in a Forest in North-Western China

Author:

Wu Xiurong12,Chong Peifang1,Xu Erwen2,Zhao Weijun2,Jing Wenmao2,Jin Ming3,Zhao Jingzhong2,Wang Shunli2,Wang Rongxin2,Ma Xuee2

Affiliation:

1. College of Forestry, Gansu Agricultural University, Lanzhou 730000, China

2. Academy of Water Resource Conservation Forests of Qilian Mountains in Gansu Province, Zhangye 734000, China

3. College of Qilian Mountain Ecological Research, Hexi University, Zhangye 734000, China

Abstract

Qinghai spruce (Picea crassifolia Kom.) is an ecologically important species in the forest ecosystem of the Qilian Mountains region in China. Natural regeneration of this species is critical to maintaining forest ecosystem function. Here, we analyzed several biological indicators among naturally regenerating Qinghai spruce across several elevations in the Pailugou watershed. Specifically, seedling density, basal diameter (BD), and plant height were measured, as were soil physicochemical parameters, at 2700 m, 3000 m, and 3300 m above sea level. Differences in the regeneration indicators and correlations between the indicators and soil parameters were then assessed across elevations. The results showed that soil stoichiometry was more sensitive to changes in elevation than seedling indicators were. Furthermore, seedling density was positively correlated with soil pH, whereas BD was positively correlated with the carbon-to-nitrogen ratio (C/N), the carbon-to-phosphorus ratio (C/P), and soil organic carbon (SOC) contents. None of the analyzed soil stoichiometry parameters had a significant impact on elevation-specific differences in seedling density. However, soil pH, SOC, and C/N significantly affected variations in seedling basal diameter at different elevations. Finally, soil pH, SOC, C/N, and the carbon-to-phosphorus ratio significantly affected variations in seedlings’ heights at different elevations. This study provides a strong theoretical basis for further understanding of the mechanisms associated with Qinghai spruce regeneration, ultimately contributing to rational protection and management strategies for this important natural resource.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

central government of Gansu Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3