Managing New Risks of and Opportunities for the Agricultural Development of West-African Floodplains: Hydroclimatic Conditions and Implications for Rice Production

Author:

Bossa Aymar Yaovi,Hounkpè JeanORCID,Yira YacoubaORCID,Serpantié GeorgesORCID,Lidon Bruno,Fusillier Jean Louis,Sintondji Luc Olivier,Tondoh Jérôme EbagnerinORCID,Diekkrüger BerndORCID

Abstract

High rainfall events and flash flooding are becoming more frequent, leading to severe damage to crop production and water infrastructure in Burkina Faso, Western Africa. Special attention must therefore be given to the design of water control structures to ensure their flexibility and sustainability in discharging floods, while avoiding overdrainage during dry spells. This study assesses the hydroclimatic risks and implications of floodplain climate-smart rice production in southwestern Burkina Faso in order to make informed decisions regarding floodplain development. Statistical methods (Mann-Kendall test, Sen’s slope estimator, and frequency analysis) combined with rainfall-–runoff modeling (HBV model) were used to analyze the hydroclimatic conditions of the study area. Moreover, the spatial and temporal water availability for crop growth was assessed for an innovative and participatory water management technique. From 1970 to 2013, an increasing delay in the onset of the rainy season (with a decreasing pre-humid season duration) occurred, causing difficulties in predicting the onset due to the high temporal variability of rainfall in the studied region. As a result, a warming trend was observed for the past 40 years, raising questions about its negative impact on very intensive rice cultivation packages. Farmers have both positive and negative consensual perceptions of climatic hazards. The analysis of the hydrological condition of the basin through the successfully calibrated and validated hydrological HBV model indicated no significant increase in water discharge. The sowing of rice from the 10th to 30th June has been identified as optimal in order to benefit from higher surface water flows, which can be used to irrigate and meet crop water requirements during the critical flowering and grain filling phases of rice growth. Furthermore, the installation of cofferdams to increase water levels would be potentially beneficial, subject to them not hindering channel drainage during peak flow.

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3