Synergistic Effects of PDO and IOD on Water Vapor Transport in the Preflood Season over South China

Author:

Li Junjie,Fan Lingli,Zhang Guangya

Abstract

It is urgent to improve the prediction accuracy of precipitation in the preflood season (PFS) over South China (SC) under the background of global warming, and thus the research of water vapor conditions is the key. For the period of 1960–2012, using the daily precipitation data from 60 meteorology stations in SC and National Centers for Environmental Prediction (NCEP) reanalysis data, the synergistic effect of PDO (the Pacific Decadal Oscillation) &IOD (the Indian Ocean Dipole Mode) on water vapor transport process to frontal/monsoon precipitation is revealed, based on the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT_4.9). For the frontal precipitation, the positive PDO phase (PDO+) compared with the negative PDO phase (PDO−), there is more water vapor over the West Pacific (WP), the northern South China Sea (SCS), and the Bay of Bengal (BOB). Water vapor for frontal precipitation mainly comes from WP and SCS. When PDO and IOD are in phase resonance, the water vapor transport tracks from the SCS, WP are shorter and westward, so more water vapor is transported to SC, the precipitation efficiency of water vapor to PFS precipitation is higher too. For the summer monsoon precipitation, the tropical Indian Ocean (IO)-BOB is rich in water vapor, especially for PDO−& IOD+. The main water vapor transport tracks are the cross-equatorial flows in the IO, BOB and SCS. The precipitation efficiency of water vapor from the IO-BOB is higher for the positive IOD phase (IOD+) than that for the negative IOD phase (IOD−); however, the precipitation efficiency of water vapor from SCS is higher for the IOD− than that for IOD+. Compared with frontal precipitation, the strong westerly anomaly in the northern IO increases the water vapor transport from the north IO, BOB to SC during monsoon precipitation. For the PDO+&IOD+, the stronger Indian Low and cyclonic anomaly in the WP increases the water vapor transported from the IO-BOB to SC, improving the precipitation efficiency of water vapor. Understanding the synergistic effect of the PDO and IOD on water vapor transport will help to improve the accuracy of precipitation prediction, and reduce the negative impact of drought and flood disasters.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3