Retrieval of 500 m Aerosol Optical Depths from MODIS Measurements over Urban Surfaces under Heavy Aerosol Loading Conditions in Winter

Author:

Jin Shikuan,Ma Yingying,Zhang Ming,Gong Wei,Dubovik OlegORCID,Liu Boming,Shi Yifan,Yang ChanglanORCID

Abstract

Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products are used worldwide for their reliable accuracy. However, the aerosol optical depth (AOD) usually retrieved by the operational dark target (DT) algorithm of MODIS has been missing for most of the urban regions in Central China. This was due to a high surface reflectance and heavy aerosol loading, especially in winter, when a high cloud cover fraction and the frequent occurrence of haze events reduce the number of effective satellite observations. The retrieval of the AOD from limited satellite data is much needed and important for further aerosol investigations. In this paper, we propose an improved AOD retrieval method for 500 m MODIS data, which is based on an extended surface reflectance estimation scheme and dynamic aerosol models derived from ground-based sun-photometric observations. This improved method was applied to retrieve AOD during heavy aerosol loading and effectively complements the scarcity of AOD in correspondence with urban surface of a higher spatial resolution. The validation results showed that the retrieved AOD was consistent with MODIS DT AOD (R = ~0.87; RMSE = ~0.11) and ground measurements (R = ~0.89; RMSE = ~0.15) from both the Terra and the Aqua satellite. The method can be easily applied to different urban environments affected by air pollution and contributes to the research on aerosol.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3