A Hierarchical Airport Detection Method Using Spatial Analysis and Deep Learning

Author:

Zeng FanxuanORCID,Cheng Liang,Li Ning,Xia Nan,Ma Lei,Zhou Xiao,Li Manchun

Abstract

Airports have a profound impact on our lives, and uncovering their distribution around the world has great significance for research and development. However, existing airport databases are incomplete and have a high cost of updating. Thus, a fast and automatic worldwide airport detection method can be of significance for global airport detection at regular intervals. However, previous airport detection studies are usually based on single remote sensing (RS) imagery, which seems an overwhelming burden for worldwide airport detection with traversal searching. Thus, we propose a hierarchical airport detection method consisting of broad-scale extraction of worldwide candidate airport regions based on spatial analysis of released RS products, including impervious surfaces from FROM-GLC10 (fine resolution observation and monitoring of global land cover 10) product, building distribution from OSMs (open street maps) and digital surface model from AW3D30 (ALOS World 3D—30 m). Moreover, narrow-scale aircraft detection was initially conducted by the Faster R-CNN (regional-convolutional neural networks) deep learning method. To avoid overestimation of background regions by Faster R-CNN, a second CNN classifier is used to refine the class labeling with negative samples. Specifically, our research focuses on target airports with at least 2 km length in three experimental regions. Results show that spatial analysis reduced the possible regions to 0.56% of the total area of 75,691 km2. The initial aircraft detection by Faster R-CNN had a mean user’s accuracy of 88.90% and ensured that all the aircrafts could be detected. Then, by introducing the CNN reclassifier, the user’s accuracy of aircraft detection was significantly increased to 94.21%. Finally, through an experienced threshold of aircraft number, 19 of the total 20 airports were detected correctly. Our results reveal the overall workflow is reliable for automatic and rapid airport detection around the world with the help of released RS products. This research promotes the application and progression of deep learning.

Funder

National Key Research and Development Plan

National Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3