DNA Fingerprint Analysis of Raman Spectra Captures Global Genomic Alterations in Imatinib-Resistant Chronic Myeloid Leukemia: A Potential Single Assay for Screening Imatinib Resistance

Author:

Mojidra RahulORCID,Hole Arti,Iwasaki KeitaORCID,Noothalapati HemanthORCID,Yamamoto Tatsuyuki,C Murali KrishnaORCID,Govekar Rukmini

Abstract

Monitoring the development of resistance to the tyrosine kinase inhibitor (TKI) imatinib in chronic myeloid leukemia (CML) patients in the initial chronic phase (CP) is crucial for limiting the progression of unresponsive patients to terminal phase of blast crisis (BC). This study for the first time demonstrates the potential of Raman spectroscopy to sense the resistant phenotype. Currently recommended resistance screening strategy include detection of BCR-ABL1 transcripts, kinase domain mutations, complex chromosomal abnormalities and BCR-ABL1 gene amplification. The techniques used for these tests are expensive, technologically demanding and have limited availability in resource-poor countries. In India, this could be a reason for more patients reporting to clinics with advanced disease. A single method which can identify resistant cells irrespective of the underlying mechanism would be a practical screening strategy. During our analysis of imatinib-sensitive and -resistant K562 cells, by array comparative genomic hybridization (aCGH), copy number variations specific to resistant cells were detected. aCGH is technologically demanding, expensive and therefore not suitable to serve as a single economic test. We therefore explored whether DNA finger-print analysis of Raman hyperspectral data could capture these alterations in the genome, and demonstrated that it could indeed segregate imatinib-sensitive and -resistant cells. Raman spectroscopy, due to availability of portable instruments, ease of spectrum acquisition and possibility of centralized analysis of transmitted data, qualifies as a preliminary screening tool in resource-poor countries for imatinib resistance in CML. This study provides a proof of principle for a single assay for monitoring resistance to imatinib, available for scrutiny in clinics.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3