The Methyltransferase Smyd1 Mediates LPS-Triggered Up-Regulation of IL-6 in Endothelial Cells

Author:

Shamloul Ahmed,Steinemann GustavORCID,Roos Kerrin,Liem Celine Huajia,Bernd Jonathan,Braun ThorstenORCID,Zakrzewicz Andreas,Berkholz JanineORCID

Abstract

The lysine methyltransferase Smyd1 with its characteristic catalytic SET-domain is highly enriched in the embryonic heart and skeletal muscles, participating in cardiomyogenesis, sarcomere assembly and chromatin remodeling. Recently, significant Smyd1 levels were discovered in endothelial cells (ECs) that responded to inflammatory cytokines. Based on these biochemical properties, we hypothesized that Smyd1 is involved in inflammation-triggered signaling in ECs and therefore, investigated its role within the LPS-induced signaling cascade. Human endothelial cells (HUVECs and EA.hy926 cells) responded to LPS stimulation with higher intrinsic Smyd1 expression. By transfection with expression vectors containing gene inserts encoding either intact Smyd1, a catalytically inactive Smyd1-mutant or Smyd1-specific siRNAs, we show that Smyd1 contributes to LPS-triggered expression and secretion of IL-6 in EA.hy926 cells. Further molecular analysis revealed this process to be based on two signaling pathways: Smyd1 increased the activity of NF-κB and promoted the trimethylation of lysine-4 of histone-3 (H3K4me3) within the IL-6 promoter, as shown by ChIP-RT-qPCR combined with IL-6-promoter-driven luciferase reporter gene assays. In summary, our experimental analysis revealed that LPS-binding to ECs leads to the up-regulation of Smyd1 expression to transduce the signal for IL-6 up-regulation via activation of the established NF-κB pathway as well as via epigenetic trimethylation of H3K4.

Funder

Deutsche Forschungsgemeinschaft

Sonnenfeld Foundation

Publisher

MDPI AG

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3