Combined Analysis of Early CD4+ T Cell Counts and CMV Serostatus May Improve CMV Risk Assessment after Allogeneic Hematopoietic Cell Transplantation

Author:

Leserer SaskiaORCID,Arrieta-Bolaños EstebanORCID,Buttkereit Ulrike,Beelen Dietrich W.,Turki Amin T.ORCID

Abstract

The incidence and severity of viral complications after cellular therapy are highly variable. Recent publications describe relevant interactions between the human Cytomegalovirus (CMV) and host immunity in recipients of allogeneic hematopoietic cell transplantation (HCT). Although immune monitoring is routinely performed in HCT patients, validated cut-off levels correlating with transplant outcomes such as survival or CMV reactivation are mostly limited to day +100, which is later than the median time for CMV reactivation in the absence of medical prophylaxis. To address this gap in early risk assessment, we applied an unsupervised machine learning technique based on clustering of day +30 CD4+ helper T cell count data, and identified relevant cut-off levels within the diverse spectrum of early CD4+ reconstitution. These clusters were stratified for CMV recipient serostatus to identify early risk groups that predict clinical HCT outcome. Indeed, the new risk groups predicted subsequent clinical events such as NRM, OS, and high CMV peak titers better than the most established predictor, i.e., the positive CMV recipient serostatus (R+). More specifically, patients from the R+/low CD4+ subgroup strongly associated with high CMV peak titers and increased 3-year NRM (subdistribution hazard ratio (SHR) 10.1, 95% CI 1.38–73.8, p = 0.023), while patients from the R-/very high CD4+ subgroup showed comparable NRM risks (SHR 9.57, 95% CI 1.12–81.9, p = 0.039) without such an association. In short, our study established novel cut-off levels for early CD4+ T cells via unsupervised learning and supports the integration of host cellular immunity into clinical risk-assessment after HCT in the context of CMV reactivation.

Funder

Deutsche Forschungsgemeinschaft

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3