Abstract
Heparanase is an endo-β-glucuronidase that is best known for its pro-cancerous effects but is also implicated in the pathogenesis of various viruses. Activation of heparanase is a common strategy to increase viral spread and trigger the subsequent inflammatory cascade. Using a Single Nucleotide Polymorphisms (SNP)-associated approach we identified enhancer and insulator regions that regulate HPSE expression. Although a role for heparanase in viral infection has been noticed, the impact of HPSE functional SNPs has not been determined. We investigated the effect of cytomegalovirus (CMV) serostatus on the involvement of HPSE enhancer and insulator functional SNPs in the risk of acute graft versus host disease (GVHD) and granulocyte-colony stimulating factor related CD34+ mobilization. A significant correlation between the C alleles of insulator rs4364254 and rs4426765 and CMV seropositivity was found in healthy donors and patients with hematological malignancies. The risk of developing acute GVHD after hematopoietic stem cell transplantation was identified only in CMV-seropositive patients. A significant correlation between the enhancer rs4693608 and insulator rs28649799 and CD34+ cell mobilization was demonstrated in the CMV-seropositive donors. It is thus conceivable that latent CMV infection modulates heparanase regulatory regions and enhances the effect of functional SNPs on heparanase function in normal and pathological processes.
Funder
Israel Science Foundation
Israel Cancer Research Fund
the DKFZ-MOST cancer research program
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献