The Effects of Fibrotic Cell Type and Its Density on Atrial Fibrillation Dynamics: An In Silico Study

Author:

Palacio Laura C.ORCID,Ugarte Juan P.ORCID,Saiz Javier,Tobón CatalinaORCID

Abstract

Remodeling in atrial fibrillation (AF) underlines the electrical and structural changes in the atria, where fibrosis is a hallmark of arrhythmogenic structural alterations. Fibrosis is an important feature of the AF substrate and can lead to abnormal conduction and, consequently, mechanical dysfunction. The fibrotic process comprises the presence of fibrotic cells, including fibroblasts, myofibroblasts and fibrocytes, which play an important role during fibrillatory dynamics. This work assesses the effect of the diffuse fibrosis density and the intermingled presence of the three types of fibrotic cells on the dynamics of persistent AF. For this purpose, the three fibrotic cells were electrically coupled to cardiomyocytes in a 3D realistic model of human atria. Low (6.25%) and high (25%) fibrosis densities were implemented in the left atrium according to a diffuse fibrosis representation. We analyze the action potential duration, conduction velocity and fibrillatory conduction patterns. Additionally, frequency analysis was performed in 50 virtual electrograms. The tested fibrosis configurations generated a significant conduction velocity reduction, where the larger effect was observed at high fibrosis density (up to 82% reduction in the fibrocytes configuration). Increasing the fibrosis density intensifies the vulnerability to multiple re-entries, zigzag propagation, and chaotic activity in the fibrillatory conduction. The most complex propagation patterns were observed at high fibrosis densities and the fibrocytes are the cells with the largest proarrhythmic effect. Left-to-right dominant frequency gradients can be observed for all fibrosis configurations, where the fibrocytes configuration at high density generates the most significant gradients (up to 4.5 Hz). These results suggest the important role of different fibrotic cell types and their density in diffuse fibrosis on the chaotic propagation patterns during persistent AF.

Funder

Ministerio de Ciencia, Tecnología e Innovación - MINCIENCIAS

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3