Prompt Graft Cooling Enhances Cardioprotection during Heart Transplantation Procedures through the Regulation of Mitophagy

Author:

Wu ZhichaoORCID,Liang Jialiang,Huang Wei,Jiang Lin,Paul Christian,Lin Bonnie,Zheng Junmeng,Wang YigangORCID

Abstract

A complete and prompt cardiac arrest using a cold cardioplegic solution is routinely used in heart transplantation to protect the graft function. However, warm ischemic time is still inevitable during the procedure to isolate donor hearts in the clinical setting. Our knowledge of the mechanism changes prevented by cold storage, and how warm ischemia damages donor hearts, is extremely poor. The potential consequences of this inevitable warm ischemic time to grafts, and the underlying potential protective mechanism of prompt graft cooling, have been studied in order to explore an advanced graft protection strategy. To this end, a surgical procedure, including 10–15 min warm ischemic time during procurement, was performed in mouse models to mimic the clinical situation (Group I), and compared to a group of mice that had the procurement performed with prompt cooling procedures (Group II). The myocardial morphologic changes (including ultrastructure) were then assessed by electron and optical microscopy after 6 h of cold preservation. Furthermore, syngeneic heart transplantation was performed after 6 h of cold preservation to measure the graft heart function. An electron microscopy showed extensive damage, including hypercontracted myofibers with contraction bands, and damaged mitochondria that released mitochondrial contents in Group I mice, while similar patterns of damage were not observed in the mice from Group II. The results from both the electron microscopy and immunoblotting verified that cardiac mitophagy (protective mitochondrial autophagy) was present in the mice from Group II, but was absent in the mice from Group I. Moreover, the mice from Group II demonstrated faster rebeating times and higher beating scores, as compared to the mice from Group I. The pressure catheter system results indicated that the graft heart function was significantly more improved in the mice from Group II than in those from Group I, as demonstrated by the left ventricle systolic pressure (31.96 ± 6.54 vs. 26.12 ± 8.87 mmHg), the +dp/dt (815.6 ± 215.4 vs. 693.9 ± 153.8 mmHg/s), and the -dp/dt: (492.4 ± 92.98 vs. 418.5 ± 118.9 mmHg/s). In conclusion, the warm ischemic time during the procedure impaired the graft function and destroyed the activation of mitophagy. Thus, appropriate mitophagy activation has emerged as a promising therapeutic target that may be essential for graft protection and functional improvement during heart transplantation.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Heart Transplantation Procedure;Heart Transplantation;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3