Evaluation of Cyclic Healing Potential of Bacteria-Based Self-Healing Cementitious Composites

Author:

Justo-Reinoso IsmaelORCID,Reeksting Bianca J.,Heath Andrew,Gebhard Susanne,Paine KevinORCID

Abstract

At present, little evidence exists regarding the capability of bacteria-based self-healing (BBSH) cementitious materials to successfully re-heal previously healed cracks. This paper investigates the repeatability of the self-healing of BBSH mortars when the initially healed crack is reopened at a later age (20 months) and the potential of encapsulated bacterial spores to heal a new crack generated at 22 months after casting. The results show that BBSH cement mortar cracks that were successfully healed at an early age were not able to successfully re-heal when cracks were reformed in the same location 20 months later, even when exposed to favourable conditions (i.e., high humidity, temperature, calcium source, and nutrients) to promote their re-healing. Therefore, it is likely that not enough bacterial spores were available within the initially healed crack to successfully start a new self-healing cycle. However, when entirely new cracks were intentionally generated at a different position in 22-month-old mortars, these new cracks were able to achieve an average healing ratio and water tightness of 93.3% and 90.8%, respectively, thus demonstrating that the encapsulated bacterial spores remained viable inside the cementitious matrix. The results reported in this paper provide important insights into the appropriate design of practical self-healing concrete and, for the first time, show limitations of the ability of BBSH concrete to re-heal.

Funder

UK Research and Innovation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3