A Group Contribution Method for Predicting the Alkyl Ester and Biodiesel Densities at Various Temperatures

Author:

Ramírez-Verduzco Luis FelipeORCID

Abstract

Biofuels are an attractive alternative from polluting activities to low carbon ones. In this understanding, biodiesel has the potential to replace fossil diesel. Density is a relevant parameter of biodiesel to work out its quality. Density models lead to reducing the costly and time-consuming experimental measurements. We compiled two databases to prove a group contribution approach. For this purpose, the first database contained 1231 densities of 58 alkyl esters, while the second covered 696 densities of 16 pure biodiesel samples and 8 biodiesel blends. The group contribution method based on the molar volume was used to estimate the alkyl ester densities, while the mixing rule proposed by Kay was used to predict the biodiesel densities. The method developed here is easy to apply and provides excellent results, because an average absolute deviation of 0.29% was reached on the biodiesel density prediction.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3