Modeling the Effect of Hyporheic Flow on Solute Residence Time Distributions in Surface Water

Author:

Jung Sung Hyun1,Kim Jun Song2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea

2. Department of Civil and Environmental Engineering, Hankyong National University, 327 Jungang-ro, Anseong-si 17579, Republic of Korea

Abstract

Understanding the dynamics of hyporheic flow is important for managing water resources, since this interfacial flow exchange affects the fate and transport of contaminants in rivers. This study numerically quantifies the effect of hyporheic exchange on solute residence times in surface water systems by simulating solute transport in unified turbulent open-channel and hyporheic zone systems. Interfacial hyporheic fluxes (qint) increase with increased Reynolds number (Re) that produces an enhanced bottom pressure gradient over the ripple bed. Heavy-tailed breakthrough curves emerge when hyporheic flow is considered in transport simulation. This reveals that hyporheic flow is a dominant driver of non-Fickian transport in surface water as this interfacial flow exchange delays solute transport with slow porewater flows. Furthermore, the increase in Re extends the longitudinal spreading of solute tracers because a higher surface flow velocity intensifies the magnitude of hyporheic flow and associated storage effects. This can be confirmed by the ratio of the maximum residence time to the peak arrival time that increases with the increase in Re, following a power-law relationship with both Re and qint.

Funder

National Research Foundation of Korea (NRF), Ministry of Education

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3