A Subaperture Motion Compensation Algorithm for Wide-Beam, Multiple-Receiver SAS Systems

Author:

Zhang Jiafeng1,Cheng Guangli1,Tang Jinsong1,Wu Haoran1,Tian Zhen1

Affiliation:

1. Institute of Electronic Engineering, Naval University of Engineering, Wuhan 430000, China

Abstract

Uncompensated motion errors can seriously affect the imaging quality of synthetic aperture sonars (SASs). In the existing line-by-line motion compensation (MOCO) algorithms for wide-beam multiple-receiver SAS systems, the approximate form of the range history error usually introduces a significant approximation error, and the residual two-dimensional (2D) range cell migration (RCM) caused by aperture-dependent motion errors is not corrected, resulting in the severe defocus of the image. In this paper, in the presence of translational and rotational errors in a multiple-receiver SAS system, the exact range history error concerning the five-degree-of-freedom (DOF) motion errors of the sway, heave, yaw, pitch, and roll under the non-stop-hop-stop case is derived. Based on this, a two-stage subaperture MOCO algorithm for wide-beam multiple-receiver SAS systems is proposed. We decompose the range history error into the beam-center term (BCT) and the residual spatial-variant term (RSVT) to compensate successively. In the first stage, the time delay and phase error caused by the BCT are compensated receiver-by-receiver through interpolation and phase multiplication in the azimuth-time domain. In the second stage, the data of a single pulse are regarded as a subaperture, and the RSVT is compensated in the subaperture range-Doppler (RD) domain. We divide the range into several blocks to correct RCM caused by the RSVT in the subaperture RD domain, and the phase error caused by the RSVT is compensated by phase multiplication. After compensation, the wide-beam RD algorithm is used for imaging. Simulated and real-data experiments verify the superiority and robustness of the proposed algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference42 articles.

1. Challenges in seafloor imaging and mapping with synthetic aperture sonar;Hansen;IEEE Trans. Geosci. Remote Sens.,2011

2. Multireceiver SAS Imagery Based on Monostatic Conversion;Zhang;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2021

3. Self-trained target detection of radar and sonar images using automatic deep learning;Zhang;IEEE Trans. Geosci. Remote Sens.,2022

4. Wide-bandwidth Signal-based Multireceiver SAS Imagery Using Extended Chirp Scaling Algorithm;Zhang;IET Radar Sonar Navig.,2022

5. Raven, R.S. (1981). Electronic Stabilization for Displaced Phase Center Systems. (4,244,036), U.S. Patent.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3