Numerical Investigation of Uplift Failure Mode and Capacity Estimation for Deep Helical Anchors in Sand

Author:

Yuan Chi1ORCID,Hao Dongxue23,Chen Rong23,Zhang Ning1

Affiliation:

1. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 110124, China

2. Key Lab of Electric Power Infrastructure Safety Assessment and Disaster Prevention of Jilin Province, Northeast Electric Power University, Jilin 132012, China

3. School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China

Abstract

The uplift capacity of helical anchors is generally taken as the control condition for design in different applications, including transmission tower foundations and offshore structures. However, it is difficult to identify the failure surface for a deep helical anchor, which may result in an incorrect assessment of uplift capability. This research proposes a new unified method to estimate the uplift capacity of deep single-helix and multi-helix anchors based on the investigation of failure mechanisms. The deep failure mode was identified by FEM analysis using a modified Mohr–Coulomb model considering the strain softening of sand, along with the coupled Eulerian–Lagrangian technique. Thereby, a simplified rupture surface is proposed, and the equations estimating the uplift capacity are presented by the limit equilibrium method. Two important factors—the lateral earth pressure coefficient and the average internal friction angle included in the equations—are discussed and determined. The comparisons with centrifugal tests verify the reasonability of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3