Adaptive Power-Controlled Depth-Based Routing Protocol for Underwater Wireless Sensor Networks

Author:

Wang Biao1ORCID,Zhang Haobo1,Zhu Yunan1ORCID,Cai Banggui1,Guo Xiaopeng1

Affiliation:

1. Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Abstract

Low energy consumption has always been one of the core issues in the routing design of underwater sensor networks. Due to the high cost and difficulty of deployment and replacement of current underwater nodes, many underwater applications require the routing protocol design to consider the network lifetime extension problem. Based on this, we designed a new routing protocol that takes into account both low energy consumption and balanced energy consumption, and achieves effective extension of the network lifetime, called adaptive power-controlled depth-based routing protocol for underwater wireless sensor networks (APCDBRP). The protocol consists of two phases: (1) the route establishment phase and (2) the data transmission phase. In the route establishment phase, the initial path is established by the sink node broadcasting beacon packets at the maximum transmission power. The receiving nodes update their routing tables based on the beacon information and forward the beacon packets. In the data transmission phase, APCDBRP introduces a novel forwarding factor that considers both energy efficiency and energy balance. It selects the optimal next hop based on high energy efficiency and relatively abundant energy, thus extending the network’s lifetime. Additionally, APCDBRP proposes a new data protection and route reconstruction mechanism to address issues such as network topology changes due to node mobility and data transmission failures. Our simulation is based on AquaSim–Next Generation, which is a specialized tool built on the NS3 platform for researching underwater networks. Simulation results demonstrate that, compared to other typical routing protocols, APCDBRP exhibits superior performance in reducing network energy consumption and extending the network’s lifetime. It also achieves a high packet delivery rate with lower energy consumption.

Funder

National Natural Science Foundation of China

Postgraduate Research and Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3