Smoke Detection of Marine Engine Room Based on a Machine Vision Model (CWC-Yolov5s)

Author:

Zou Yongjiu12ORCID,Zhang Jinqiu1,Du Taili12ORCID,Jiang Xingjia12ORCID,Wang Hao1ORCID,Zhang Peng12ORCID,Zhang Yuewen12,Sun Peiting1ORCID

Affiliation:

1. Marine Engineering College, Dalian Maritime University, Dalian 116026, China

2. Collaborative Innovation Research Institute of Autonomous Ship, Dalian Maritime University, Dalian 116026, China

Abstract

According to statistics, about 70% of ship fire accidents occur in the engine room, due to the complex internal structure and various combustible materials. Once a fire occurs, it is difficult to extinguish and significantly impacts the crew’s life and property. Therefore, it is urgent to design a method to detect the fire phenomenon in the engine room in real time. To address this problem, a machine vision model (CWC-YOLOv5s) is proposed, which can identify early fires through smoke detection methods. Firstly, a coordinate attention mechanism is added to the backbone of the baseline model (YOLOv5s) to enhance the perception of image feature information. The loss function of the baseline model is optimized by wise intersection over union, which speeds up the convergence and improves the effect of model checking. Then, the coordconv coordinate convolution layer replaces the standard convolution layer of the baseline model, which enhances the boundary information and improves the model regression accuracy. Finally, the proposed machine vision model is verified by using the ship video system and the laboratory smoke simulation bench. The results show that the proposed model has a detection precision of 91.8% and a recall rate of 88.1%, which are 2.2% and 4.6% higher than those of the baseline model.

Funder

National Natural Science Foundation of China

Scientific Research Fund of the Educational Department of Liaoning Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3