Hybrid Model Predictive Control of a Two-Body Wave Energy Converter with Mechanically Driven Power Take-Off

Author:

Zhang Zhenquan1,Qin Jian1,Wang Dengshuai1,Huang Shuting1,Liu Yanjun12,Xue Gang12

Affiliation:

1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China

2. School of Mechanical Engineering, Key Laboratory of High-Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China

Abstract

In this paper, a variable damper is proposed to regulate the efficiency of a two-body wave energy converter (WEC) with mechanically driven power take-off (PTO). The variable damper introduces logic constraints into the WEC system, which can be translated into a mixed logical dynamical form with the dynamics of real-valued variables, the dynamics of logic variables, and their interactions. A hybrid model predictive control (MPC) method is used to determine the control inputs, which has the capacity to handle various constraints. The performance is assessed through simulations to evaluate the effectiveness of the proposed method. The achievable performance improvements of the proposed hybrid MPC are shown by means of comparative analysis with uncontrolled WEC devices. The results show that the proposed hybrid MPC has a high requirement on the lower bound of the variable damper and the maximum damping is used only at low relative velocities to achieve the optimum phase, like latching control. The hybrid MPC performs exceptionally well under wave conditions with a small significant wave height and long wave period, improving the power generation of the uncontrolled system up to 22.5%. And, the prediction error has a significant effect on hybrid MPC performance, especially for long prediction horizon.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3