A Fuzzy Dempster–Shafer Evidence Theory Method with Belief Divergence for Unmanned Surface Vehicle Multi-Sensor Data Fusion

Author:

Qiao Shuanghu1ORCID,Song Baojian1,Fan Yunsheng12ORCID,Wang Guofeng12ORCID

Affiliation:

1. College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China

2. Key Laboratory of Technology and System for Intelligent Ships of Liaoning Province, Dalian 116026, China

Abstract

The safe navigation of unmanned surface vehicles in the marine environment requires multi-sensor collaborative perception, and multi-sensor data fusion technology is a prerequisite for realizing the collaborative perception of different sensors. To address the problem of poor fusion accuracy for existing multi-sensor fusion methods without prior knowledge, a fuzzy evidence theory multi-sensor data fusion method with belief divergence is proposed in this paper. First of all, an adjustable distance for measuring discrepancies between measurements is devised to evaluate the degree of measurement closeness to the true value, which improves the adaptability of the method to different classes of sensor data. Furthermore, an adaptive multi-sensor measurement fusion strategy is designed for the case where the sensor accuracy is known in advance. Secondly, the affiliation function of the fuzzy theory is introduced into the evidence theory approach to assign initial evidence of measurements in terms of defining the degree of fuzzy support between measurements, which improves the fusion accuracy of the method. Finally, the belief Jensen–Shannon divergence and the Rényi divergence are combined for measuring the conflict between the evidence pieces to obtain the credibility degree as the reliability of the evidence, which solves the problem of high conflict between evidence pieces. Three examples of multi-sensor data fusion in different domains are employed to validate the adaptability of the proposed method to different kinds of multi-sensors. The maximum relative error of the proposed method for multiple sensor experiments is greater than or equal to 0.18%, and its error accuracy is much higher than the best result of 0.46% among other comparative methods. The experimental results verify that the proposed data fusion method is more accurate than other existing methods.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Pilot Base Construction and Pilot Verification Plan Program of Liaoning Province of China

Key Development Guidance Program of Liaoning Province of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3