Nitrogen and Phosphorous Retention in Tropical Eutrophic Reservoirs with Water Level Fluctuations: A Case Study Using Mass Balances on a Long-Term Series

Author:

Barjau-Aguilar MarielORCID,Merino-Ibarra MartínORCID,Ramírez-Zierold Jorge A.,Castillo-Sandoval Sergio F.,Vilaclara-Fatjó Gloria,Guzmán-Arias Andrea P.,Macek MiroslavORCID,Alcántara-Hernández Rocío J.,Sánchez-Carrillo Salvador,Valdespino-Castillo Patricia M.,Sacristán-Ramírez Arantxa,Quintanilla-Terminel José G.,Monroy-Ríos EmilianoORCID,Díaz-Valenzuela Julio,Lestayo-González Julio A.ORCID,Gerardo-Nieto Oscar A.,González-De Zayas Roberto

Abstract

Nitrogen and phosphorous loading drives eutrophication of aquatic systems. Lakes and reservoirs are often effective N and P sinks, but the variability of their biogeochemical dynamics is still poorly documented, particularly in tropical systems. To contribute to the extending of information on tropical reservoirs and to increase the insight on the factors affecting N and P cycling in aquatic ecosystems, we here report on a long-term N and P mass balance (2003–2018) in Valle de Bravo, Mexico, which showed that this tropical eutrophic reservoir lake acts as a net sink of N (−41.7 g N m−2 y−1) and P (−2.7 g P m−2 y−1), mainly occurring through net sedimentation, equivalent to 181% and 68% of their respective loading (23.0 g N m−2 y−1 and 4.2 g P m−2 y−1). The N mass balance also showed that the Valle de Bravo reservoir has a high net N atmospheric influx (31.6 g N m−2 y−1), which was 1.3 times the external load and likely dominated by N2 fixation. P flux was driven mainly by external load, while in the case of N, net fixation also contributed. During a period of high water level fluctuations, the net N atmospheric flux decreased by 50% compared to high level years. Our results outlining water regulation can be used as a useful management tool of water bodies, by decreasing anoxic conditions and net atmospheric fluxes, either through decreasing nitrogen fixation and/or promoting denitrification and other microbial processes that alleviate the N load. These findings also sustain the usefulness of long-term mass balances to assess biogeochemical dynamics and its variability.

Funder

Consejo Nacional de Ciencia y Tecnología

National Autonomous University of Mexico

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3