Abstract
The evolution of overburden deformation is crucial for safety and environmental efficiency and its monitoring is becoming a key scientific issue. The use of an optical fiber sensor (OFS) for mining engineering is now receiving praise by virtue of its distinct abilities of distribution, high accuracy, and anti-interference measurement. Nevertheless, the dynamic response of OFS monitoring on overburden deformation still needs to be characterized in detail. This paper analyzed the characterization pattern of overburden deformation based on distributed optical fiber sensing (DOFS) by means of an analogue model test. Then, we discuss the influence of rules of optical fiber embedding on a model test in a numerical simulation. The results show that the DOFS monitoring demonstrates the time-space evolution of overburden deformation and the development of three horizontal areas and three vertical zones. A standardization DOFS characterization model is proposed to expound the characterization mechanism of the overburden structure zoning process; the influence of optical fiber embedding on rock displacement in the model test is revealed, and it is found that the displacement error will increase sharply when the fiber diameter is larger than 2 mm. These findings could provide an effective solution for a monitoring method in intelligent mining from the perspective of a theoretical basis and technological system.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献