EEG-Based Emotion Classification for Alzheimer’s Disease Patients Using Conventional Machine Learning and Recurrent Neural Network Models

Author:

Seo JungryulORCID,Laine Teemu H.ORCID,Oh Gyuhwan,Sohn Kyung-AhORCID

Abstract

As the number of patients with Alzheimer’s disease (AD) increases, the effort needed to care for these patients increases as well. At the same time, advances in information and sensor technologies have reduced caring costs, providing a potential pathway for developing healthcare services for AD patients. For instance, if a virtual reality (VR) system can provide emotion-adaptive content, the time that AD patients spend interacting with VR content is expected to be extended, allowing caregivers to focus on other tasks. As the first step towards this goal, in this study, we develop a classification model that detects AD patients’ emotions (e.g., happy, peaceful, or bored). We first collected electroencephalography (EEG) data from 30 Korean female AD patients who watched emotion-evoking videos at a medical rehabilitation center. We applied conventional machine learning algorithms, such as a multilayer perceptron (MLP) and support vector machine, along with deep learning models of recurrent neural network (RNN) architectures. The best performance was obtained from MLP, which achieved an average accuracy of 70.97%; the RNN model’s accuracy reached only 48.18%. Our study results open a new stream of research in the field of EEG-based emotion detection for patients with neurological disorders.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference98 articles.

1. World Alzheimer Report 2015 The Global Impact of Dementia An Analysis of Prevalence, Incidence, Cost and Trends;Prince,2015

2. World Alzheimer Report 2018 the State of the Art of Dementia Research: New Frontiers;Patterson,2018

3. Outdoor environments for people with dementia: an exploratory study using virtual reality

4. SenseCare: Using Automatic Emotional Analysis to Provide Effective Tools for Supporting

5. Wireless Health Care Service System for Elderly With Dementia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3