Neuro-Evolutionary Framework for Design Optimization of Two-Phase Transducer with Genetic Algorithms

Author:

Zameer Aneela1ORCID,Naz Sidra2,Raja Muhammad Asif Zahoor3ORCID,Hafeez Jehanzaib1,Ali Nasir1

Affiliation:

1. Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan

2. Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan

3. Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan

Abstract

Multilayer piezocomposite transducers are widely used in many applications where broad bandwidth is required for tracking and detection purposes. However, it is difficult to operate these multilayer transducers efficiently under frequencies of 100 kHz. Therefore, this work presents the modeling and optimization of a five-layer piezocomposite transducer with ten variables of nonuniform layer thicknesses and different volume fractions by exploiting the strength of the genetic algorithm (GA) with a one-dimensional model (ODM). The ODM executes matrix manipulation by resolving wave equations and produces mechanical output in the form of pressure and electrical impedance. The product of gain and bandwidth is the required function to be maximized in this multi-objective and multivariate optimization problem, which is a challenging task having ten variables. Converting it into the minimization problem, the reciprocal of the gain-bandwidth product is considered. The total thickness is adjusted to keep the central frequency at approximately 50–60 kHz. Piezocomposite transducers with three active materials, PZT5h, PZT4d, PMN-PT, and CY1301 polymer, as passive materials were designed, simulated, and statistically evaluated. The results show significant improvement in gain bandwidth compared to previous existing techniques.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3