Design and Processing of Gas Turbine Blades Based on Additive Manufacturing Technology

Author:

Liu Xuan1,Han Xingguo12,Yin Guofu3,Song Xiaohui2,Cui Lixiu2

Affiliation:

1. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. School of Mechanical Engineering, Guilin University of Aerospace Technology, Guilin 541004, China

3. School of Mechanical Engineering, Sichuan University, Chengdu 610065, China

Abstract

Aiming at the problems of the complex shape, difficult three-dimensional (3D) digital modeling and high manufacturing quality requirements of gas turbine blades (GTB), a method of fitting the blade profile line based on a cubic uniform B-spline interpolation function was proposed. Firstly, surface modeling technology was used to complete the fitting of the blade profile of the GTB, and the 3D model of the GTB was synthesized. Secondly, the processing parameters of the additive manufacturing were set, and the GTB model was printed by fused deposition technology. Then, the rapid investment casting was completed with the printed model as a wax model to obtain the GTB casting. Finally, the blade casting was post-processed and measured, and it was found to meet the requirements of machining accuracy and surface quality.

Funder

National Natural Science Foundation of China

Guilin Key Research and Development Project

Guilin Scientific Research Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3