Macro- and Microelements and the Impact of Sub-Mediterranean Downy Oak Forest Communities on Their Composition in Rainwater

Author:

Pham Cam Nhung1ORCID,Gorbunov Roman1ORCID,Lapchenko Vladimir2,Gorbunova Tatiana13ORCID,Tabunshchik Vladimir1ORCID

Affiliation:

1. A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 299011 Sevastopol, Russia

2. T.I. Vyazemsky Karadag Scientific Station—Nature Reserve of RAS—Branch of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 298188 Feodosia, Russia

3. Institute of Environmental Engineering, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia

Abstract

In this study, we analyzed the content of chemical elements in rainwater and investigated the influence of forest cover on the composition of precipitation. The results obtained showed that the concentration of some elements in the rainwater collected under the forest canopy was higher than that in the open area. As part of the work, we calculated the enrichment factor and examined the sources of chemical elements in rainwater. We found that all macro-elements had increased values of the enrichment factors compared to the supporting elements of the Earth’s crust. Ca had the highest value. The values of the remaining elements (Sr, Pb, Mn, Cr, Ba, V, Fe) indicated their lithogenic and anthropogenic origins. We noted that the enrichment factor under the forest canopy was significantly lower than in the open area, indicating the dilution of these elements during water passage through the canopy. Elements such as Zn, Co, Cu, and Ni also had high enrichment factors, which indicate their anthropogenic origin. In the open area, most elements had an inverse relationship with pH, except for the alkali metals Na, Mg, and Ca, which had a positive relationship with the pH value. The concentration of K was not dependent on pH. In rainwater that had passed through the forest canopy, the concentrations of Na, Mg, and Ca were also not dependent on pH, while the concentration of K had an inverse relationship with pH. As the concentration of heavy metals in rainwater increases, the role of Na, Mg, and Ca in the process of water neutralization decreases.

Funder

KSS–NR RAS–Branch of IBSS

RUDN University Strategic Academic Leadership Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3