Estimation of Forest Canopy Fuel Moisture Content in Dali Prefecture by Combining Vegetation Indices and Canopy Radiative Transfer Models from MODIS Data

Author:

Yang Kun12,Tang Bo-Hui123ORCID,Fu Wei12,Zhou Wei12,Fu Zhitao12ORCID,Fan Dong12ORCID

Affiliation:

1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Key Laboratory of Plateau Remote Sensing, Department of Education of Yunnan Province, Kunming 650093, China

3. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Forest canopy fuel moisture content (FMC) is a critical factor in assessing the vulnerability of a specific area to forest fires. The conventional FMC estimation method, which relies on look-up tables and loss functions, cannot to elucidate the relationship between FMC and simulated data from look-up tables. This study proposes a novel approach for estimating FMC by combining enhanced vegetation index (EVI) and normalized difference moisture index (NDMI). The method employs the PROSAIL + PROGeoSAIL two-layer coupled radiation transfer model to simulate the vegetation index, the water index, and the FMC value, targeting the prevalent double-layer structure in the study area’s vegetation distribution. Additionally, a look-up table is constructed through numerical analysis to investigate the relationships among vegetation indices, water indices, and FMC. The results reveal that the polynomial equations incorporating vegetation and water indices as independent variables exhibit a strong correlation with FMC. Utilizing the EVI–NDMI joint FMC estimation method enables the direct estimation of FMC. The collected samples from Dali were compared with the estimated values, revealing that the proposed method exhibits superior accuracy (R2 = 0.79) in comparison with conventional FMC estimation methods. In addition, we applied this method to estimate the FMC in the Chongqing region one week before the 2022 forest fire event, revealing a significant decreasing trend in regional FMC leading up to the fire outbreak, highlighting its effectiveness in facilitating pre-disaster warnings.

Funder

National Natural Science Foundation of China

Yunling Scholar Project of the “Xingdian Talent Support Program” of Yunnan Province

Platform Construction Project of High Level Talent of Kunming University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3