Ecological Shifts: Plant Establishment in an Animal-Based Ecosystem

Author:

Walters Linda J.1ORCID,Sacks Paul E.1,Harris Katherine1ORCID,McClenachan Giovanna2ORCID

Affiliation:

1. Department of Biology, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA

2. School of Marine and Atmospheric Sciences, Stony Brook University, 145 Endeavour, Stony Brook, NY 11790, USA

Abstract

Shifts from saltmarsh to mangroves are well-documented at mangrove poleward boundaries. A regime shift from intertidal oyster (Crassostrea virginica) reefs to mangrove islands has recently been documented in transitional phases in Florida, USA. To understand the local drivers of an oyster/mangrove regime shift and potential tipping points leading to a permanent mangrove state, we tracked all mangrove propagules (n = 1681) across 15 intertidal oyster reefs with or without adult mangroves for 15 months in Mosquito Lagoon, FL. While no propagule bottleneck was observed, few (3.2%) mangrove propagules/seedlings survived on reefs with no prior encroachment, compared to 11.3% and 16.1% on reefs with established older (pre-1943) or newer (1943 to present) adult mangrove stands, respectively. In total, 90.6% of the arriving propagules were from the red mangrove Rhizophora mangle; 13.2% of these were alive at the end of this study. Survival was <1% for black (Avicenna germinans) and 0% for white (Laguncularia racemosa) mangroves. Factors that promoted red mangrove success included close proximity (≤0.3 m) to adult mangroves, especially black mangroves; partial, upright burial of propagules in sediment; and arrival on reefs after annual high-water season. Additionally, once reefs had 50% mangrove cover, the density of red mangrove seedlings increased from 0.04 to 0.46 individuals m−2. Although climate change has alleviated the impact of extreme freezes on mangroves, local factors determine whether the regime shift will be complete and permanent; positive feedback loops associated with established mangroves suggest mangrove recruitment on intertidal oyster reefs will continue to increase.

Funder

NSF CNH program

UCF Biology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3