Multi-Endpoint Analysis of Cerium and Gadolinium Effects after Long-Term Exposure to Phaeodactylum tricornutum

Author:

Siciliano Antonietta1ORCID,Spampinato Marisa12,Salbitani Giovanna1ORCID,Guida Marco12,Carfagna Simona1,Brouziotis Antonios Apostolos13ORCID,Trifuoggi Marco3ORCID,Bossa Rosanna1ORCID,Saviano Lorenzo1,Padilla Suarez Edith Guadalupe1,Libralato Giovanni1ORCID

Affiliation:

1. Department of Biology, University of Naples Federico II, 80126 Naples, Italy

2. NBFC, National Biodiversity Future Center, 90133 Palermo, Italy

3. Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy

Abstract

The significantly increasing levels of Rare Earth Elements (REEs) in seawater are largely due to multiple anthropogenic activities. Their effects on marine primary producers such as Phaeodactylum tricornutum have not been fully assessed. This study focused on examining the long-term impacts of these two commonly occurring REEs, cerium (Ce) and gadolinium (Gd), on marine diatoms by 28 d of exposure. The 72 h effective concentrations that inhibited the growth of 20% (EC20) and 50% (EC50) of the exposed population were used for long-term exposures. The growth, oxidative stress level, photosynthetic pigments, and chlorophyll fluorescence were assessed in the diatoms, after 7, 14, 21, and 28 d of REEs exposure. Results display a difference in the toxicity induced by the two elements. Exposure to 2.39 mg/L (EC20) and 3.13 mg/L (EC50) of Ce, and to 4.52 mg/L (EC20) and 6.02 mg/L (EC50) of Gd displayed a lower effect on the growth of algae cells, as the response remained below 20% for inhibition or stimulation. Except for GD, the ROS and the activities of SOD, and LPO showed, during the exposure, comparable levels respect to control cells. A change in chlorophyll levels was also observed especially under Ce exposure. Both elements showed changes in photosynthetic performance. This study provides new insights into the different effects of Ce and Gd on P. tricornutum, demonstrating their diverse modes of action on this important primary producer. The findings provide further evidence of the adverse effects of anthropogenic REEs pollution on marine ecosystems.

Funder

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie

Italian Ministry of University and Research, PNRR, Missione 4 Componente 2, “Dalla ricerca all’impresa”, Investimento 1.4

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3