Abstract
Bolivia is among the countries with the highest availability of freshwater globally. However, many of its natural sources are impacted by anthropogenic activities, such as mining. Water is intimately linked to public health and is essential to achieving sustainable development. It is necessary to preserve water resources by designing and validating monitoring programs that help control the quality of the sources that supply important population centers. The study area in this research is the upper part of the Milluni micro-basin, whose lagoon system supplies water for two large cities. Milluni is close to illegal and abandoned mining areas, making the region highly vulnerable to heavy metal contamination. This study aimed to optimize the resources available for monitoring Milluni. The frequency of monitoring was statistically determined, and the correlation between parameters measured in situ (pH and conductivity) and metal ion concentrations to determine low-cost indicators to monitor the presence of heavy metals. A multivariate analysis of friction of the results of the pilot year of the monitoring program designed for Milluni, considering the characteristics and economic limitations, is presented. An approximation of the quality of the surface water resources of Milluni is presented as a result of the monitoring operations.
Funder
Universitat Politècnica de València
Universidad Católica Bolivia San Pablo
Subject
General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics