Water Purification and Electrochemical Oxidation: Meeting Different Targets with BDD and MMO Anodes

Author:

Snowdon Monika R.ORCID,Rathod Shasvat,Fattahi Azar,Khan AbrarORCID,Bragg Leslie M.,Liang Robert,Zhou Norman,Servos Mark R.

Abstract

The complex composition of natural organic matter (NOM) can affect drinking water treatment processes, leading to perceptible and undesired taste, color and odor, and bacterial growth. Further, current treatments tackling NOM can generate carcinogenic by-products. In contrast, promising substitutes such as electrochemical methods including electrooxidation (EO) have shown safer humic acid and algae degradation, but a formal comparison between EO methods has been lacking. In this study, we compared the Boron-doped diamond (BDD) electrode electrolysis performance for Suwannee River NOM degradation using mixed-metal oxide (MMO) anodes under different pH (6.5 and 8.5) representative of the high and low ranges for acidity and alkalinity in wastewater and applied two different current densities (10 and 20 mA cm−2). BDD anodes were combined with either BDD cathodes or stainless steel (SS) cathodes. To characterize NOM, we used (a) total organic compound (TOC), (b) chemical oxygen demand (COD), (c) specific ultraviolet absorbance (SUVA), and (d) specific energy consumption. We observed that NOM degradation differed upon operative parameters on these two electrodes. BDD electrodes performed better than MMO under stronger current density and higher pH and proved to be more cost-effective. BDD-SS electrodes showed the lowest energy consumption at 4.4 × 103 kWh kg COD−1. while obtaining a TOC removal of 40.2%, COD of 75.4% and SUVA of 3.4 at higher pH and current. On the contrary, MMO produced lower TOC, COD and SUVA at the lower pH. BDD electrodes can be used in surface water as a pre-treatment in combination with some other purification technologies to remove organic contaminants.

Funder

Canada Research Chair

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3