Detection of Emerging Stress in Trees Using Hyperspectral Indices as Classification Features

Author:

Moley Laura M.1ORCID,Goodin Douglas G.1ORCID,Winslow William P.12

Affiliation:

1. Department of Geography and Geospatial Sciences, Kansas State University, Manhattan, KS 66503, USA

2. Department of Landscape Architecture and Urban Planning, Texas A&M University, College Station, TX 77843, USA

Abstract

This research presents a classification methodology for the detection of new or emerging stress in trees using indices derived from hyperspectral data and tests whether existing hyperspectral indices are effective when used as the classification features for this problem. We tested six existing indices—Water Band Index (WBI), Gitelson–Merzlyak B Index (GMb), Normalized Phaeophytization Index (NPQI), Combined Carotenoid/Chlorophyll Ratio Index (CCRI), Photochemical Reflectance Index (PRI), and Red-Edge Chlorophyll Index (CIre)—along with a seventh Test Index—generated as a composite of PRI and Cire—as classification features. Analysis was conducted using data collected from trees with and without emerald ash borer (EAB) infestation to develop a methodology that could be adapted to measure emerging stress from other pathogens or invasive pests in other tree species. Previous work has focused specifically on the identification of damage or stress symptoms caused by a specific pathogen. In this study, we adapted that work to develop a system of classification that can be applied to the identification of stress symptoms from a range of sources, measurable in trees based on spectral response and, in some cases, detectable prior to the onset of visible symptoms that can be measured through human observation. Our data indicate that existing indices derived from hyperspectral data are effective as classification features when measuring spectral responses indicative of emerging stress in trees.

Funder

Kansas State University and the Kansas Forest Service

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3