Impacts on Urban VOCs and PM2.5 during a Wildfire Episode

Author:

Wang Zhong-Min1ORCID,Wang Ping1ORCID,Wagner Jeff1ORCID,Kumagai Kazukiyo1ORCID

Affiliation:

1. Air Quality Section, Environmental Health Laboratory, Center for Lab Science, California Department of Public Health, Richmond, CA 94804, USA

Abstract

This study focuses on the impact of wildfire smoke emissions on regional, urban air quality during a wildfire event. We measured volatile organic compounds (VOCs) and fine particulate matter (PM2.5) in the San Francisco Bay Area to assess air quality during a wildfire event and compared them to those in a later non-wildfire period. VOCs were collected using thermal desorption tubes and quantified using thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Elevated concentrations of VOCs such as 1,3,5-trimethylbenzene (0.33 ± 0.01 µg/m3), benzene (1.03 ± 0.02 µg/m3), toluene (2.15 ± 0.04 µg/m3), ethylbenzene (0.60 ± 0.02 µg/m3), and m, p-xylene (0.77 ± 0.07 µg/m3) were observed in the wildfire event. Compared with that in the non-wildfire season, the toluene concentration during the wildfire period was more than three times the non-wildfire concentration. Similarly, the benzene concentration during the wildfire was almost four times higher, and that of p, m-xylene was three times higher. The higher wildfire levels were statistically significant for sec-butylbenzene, 1,2,4-trimethylbenzene, n-propylbenzene, o-xylene, styrene, 1,3,5-trimethylbenzene, benzene, toluene, ethylbenzene, and p,m-xylene (p < 0.00001). These higher VOC levels compared with those for the non-fire period may potentially pose a public health concern. Open face passive sampler (OFPS)-collected PM was analyzed using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and revealed organic carbon tar balls. The highest daily average beta-attenuation-monitored PM2.5 during the fire period was 200 µg/m3 and the highest hourly average was 270 µg/m3. Monitoring gas phase species in addition to PM concentrations is useful during wildfire season to inform public health guidance.

Funder

California Department of Public Health

Publisher

MDPI AG

Reference59 articles.

1. Wildfire responses to abrupt climate change in North America;Marlon;Proc. Natl. Acad. Sci. USA,2009

2. US-EPA (2021, August 30). Climate Impacts on Ecosystems, Available online: https://19january2017snapshot.epa.gov/climate-impacts/climate-impacts-ecosystems_.html.

3. Impact of anthropogenic climate change on wildfire across western US forests;Abatzoglou;Proc. Natl. Acad. Sci. USA,2016

4. CalFire (2024, March 16). Camp Fire Incident Update. 2018 10/24/2022, Available online: https://www.fire.ca.gov/incidents/2018/11/8/camp-fire/.

5. Wikipedia (2023, August 14). 2018 California Wildfires. Available online: https://en.wikipedia.org/wiki/2018_California_wildfires#:~:text=It%20was%20also%20the%20largest,100%20million%20acres%20of%20land.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3