Precipitation and Temperature Trends and Cycles Derived from Historical 1890–2019 Weather Data for the City of Ottawa, Ontario, Canada

Author:

Walsh Carling Ruth,Patterson R. Timothy

Abstract

Patterns in historical climate data were analyzed for Ottawa, Ontario, Canada, for the interval 1890–2019. Variables analyzed included records of annual, seasonal, and extreme temperature and precipitation, diurnal temperature range, and various environmental responses. Using LOWESS regressions, it was found that annual and seasonal temperatures in Ottawa have generally increased through this interval, precipitation has shifted to a less snowy, rainier regime, and diurnal temperature variation has decreased. Furthermore, the annual growing season has lengthened by 23 days to ~163 days, and the annual number of frost-free days increased by 13 days to ~215 days. Despite these substantial climatic shifts, some variables (e.g., extreme weather events per year) have remained largely stable through the interval. Time-series analyses (including multitaper spectral analysis and continuous and cross wavelet transforms) have revealed the presence of several strong cyclical patterns in the instrumental record attributable to known natural climate phenomena. The strongest such influence on Ottawa’s climate has been the 11-year solar cycle, while the influence of the El Niño-Southern Oscillation, Arctic Oscillation, North Atlantic Oscillation, and Quasi-Biennial Oscillation were also observed and linked with the trends in annual, seasonal, and extreme weather. The results of this study, particularly the observed linkages between temperature and precipitation variables and cyclic climate drivers, will be of considerable use to policymakers for the planning, development, and maintenance of city infrastructure as Ottawa continues to rapidly grow under a warmer, wetter climate regime.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3