A Dynamic Multiple Reaction Monitoring Analytical Method for the Determination of Fungicide Residues in Drinking Water

Author:

Arvanitidis Aggelos1,Adamidis George S.1ORCID,Parlakidis Paraskevas1,Gikas Georgios D.2ORCID,Alexoudis Christos1,Vryzas Zisis1ORCID

Affiliation:

1. Laboratory of Agricultural Pharmacology and Ecotoxicology, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestias, Greece

2. Laboratory of Ecological Engineering and Technology, Department of Environmental Engineering, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

Abstract

The extensive use of fungicides causes their continuous release into the environment through spraying, soil seepage, leaching, and runoff. It has been observed that their residues can be found in foods and a variety of environmental compartments, such as wastewater, lakes, rivers, sediments, drinking water sources (groundwater and surface water), treated water, and drinking water. A sensitive GC-MS/MS, using dynamic multiple reaction monitoring, an analytical method was developed to determine 10 fungicides (azoxystrobin, boscalid, captan, cyproconazole, cyprodinil, hexaconazole, metalaxyl, myclobutanil, paclobutrazol, and prochloraz) in drinking water. A solid-phase extraction method for sample preparations and validations was performed according to SANTE 2019 guidelines. All fungicides demonstrated mild or medium matrix effects (ME) ranging from 40.1% to 11.2%. Their recoveries ranged between 60% and 110%. The limits of detection were equal to or higher than 0.01 μg/L. The method was employed on 18 drinking water samples collected from public taps in Northern Evros, Greece, distributed in six sampling sites. Azoxystrobin, boscalid, cyproconazole, cypronidil, metalaxyl, and paclobutrazol mean concentrations did not surpass the allowable limit of 0.1 μg/L set by EU in any sampling site. Hexaconazole mean concentrations were higher than 0.1 μg/L in one sampling site, while prochloraz mean concentration showed limit exceedances in all sampling sites. Captan was not detected in any sampling site, and myclobutanil mean concentrations demonstrated exceedances of the permissible limit in four sampling sites. The presence of fungicide residues in the studied area is mainly due to the occasional point-sources pollution and preferential flow. Additionally, through the use of water, the risk of pesticides to human health was assessed for two different age groups. The sum of the hazard quotient values in each of the studied drinking water was less than unity. Consequently, the acute risk assessment procedure regards the examined drinking water as safe. Nevertheless, as prochloraz carcinogenic risk values were higher than the safe limit suggested by USEPA for both age groups, the existence of prochloraz residues raises concerns about chronic toxicity.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3