A Comparative Study on the Removal of Microcystis and Cylindrospermopsis Blooms in Two Lakes by Flocculation–Filtration Treatment

Author:

Zhou Cheng1,Deng Sisi1,Xu Lei2,Liu Xiang2,Wang Chunbo23,Chang Junjun1ORCID

Affiliation:

1. Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China

2. Key Laboratory of Algal Biology of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

3. Dianchi Lake Ecosystem Observation and Research Station of Yunnan Province, Kunming 650228, China

Abstract

Dianchi Lake and Yilong Lake, two prominent plateau lakes in Yunnan Province, China, have suffered from Microcystis and Cylindrospermopsis blooms for decades. While cyanobacteria harvest boats utilizing cationic polyacrylamide (CPAM) flocculation and screen filtration have been proven effective for harvesting Microcystis biomass in Dianchi Lake, they struggle against Cylindrospermopsis blooms in Yilong Lake. This study systematically compared the removal of Microcystis and Cylindrospermopsis blooms using flocculation–filtration treatment, aiming to identify key factors influencing flocculation and propose enhancements to improve treatment efficiency for Cylindrospermopsis blooms. The reduction of turbidity, OD680, biovolume and phytoplankton density all revealed significantly better treatment efficiency for Microcystis blooms compared to Cylindrospermopsis blooms. In Dianchi Lake, 1 mg/L CPAM achieved a 95% turbidity reduction, while in Yilong Lake, even with 4.0 mg/L CPAM, the removal efficiency remained below 90%. Post-treatment, Dianchi Lake’s water quality showed substantial improvements, including over 50% reductions in total nitrogen, total phosphorus, permanganate index, and chemical oxygen demand. Conversely, nutrient level reductions were limited in Yilong Lake’s treated water. The average molecular weight of dissolved organic matters (DOM) in Yilong Lake was notably smaller than in Dianchi Lake. The treatment selectively removed high molecular weight, microbial-sourced, and protein-like DOM components, leading to a decrease in average molecular weight and an increase in humification index (HIX) in both lakes. Excessive humic matters in the water of Yilong Lake was found to hamper algae flocculation significantly. Introducing additional acidic polysaccharides or oxidants emerged as potential strategies to enhance Yilong Lake’s treatment efficiency.

Funder

National Natural Science Foundation of China

Key R&D plan of Hubei Province

China’s National Key R&D Programmes

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3