Modification of Hardwood Derived Biochar to Improve Phosphorus Adsorption

Author:

Arbelaez Breton Laura,Mahdi Zainab,Pratt Chris,El Hanandeh AliORCID

Abstract

The excessive application of phosphorus in agricultural lands leads to serious environmental issues. Efficient application is beneficial from an economic and environmental perspectives. Biochar can be used as a carrier for slow release of phosphate. However, its adsorption capacity is limited. In this work, biochar was prepared at different pyrolysis temperatures (350–550 °C). The biochar prepared at 550 °C had the highest adsorption capacity and was selected for modification by magnesium impregnation. Magnesium modification enhanced the adsorption capacity by 34% to a theoretical max adsorption capacity of 463.5 mg·g−1. The adsorbed phosphate can be desorbed. The desorption was bi-phasic with fast- and slow-release fractions. The distribution of the phosphate fractions was pH dependent with slow release being most prominent in neutral conditions. Mg modified biochar can be used to recover phosphate and then used as a carrier for slow release of phosphate. The bi-phasic desorption behaviour is useful as the fast release fraction can provide the immediate phosphate needed during plant establishment, while the slow-release fraction maintains steady supply over extended periods.

Funder

Griffith University’s School of Environment and Science ENGAGE Initiative

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3