The Environmental Impact of E-Waste Microplastics: A Systematic Review and Analysis Based on the Driver–Pressure–State–Impact–Response (DPSIR) Framework

Author:

Prata Joana C.12ORCID

Affiliation:

1. 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal

2. School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal

Abstract

Microplastics resulting from the fragmentation of plastics in electronic waste (e-waste) are an emerging but understudied environmental concern. This systematic review employs a Driver–Pressure–State–Impact–Response (DPSIR) framework to investigate the sources, prevalence, and environmental effects of e-waste microplastics, identifying knowledge gaps. The available literature on e-waste microplastics was retrieved from Scopus and Web of Science (n = 24), and trends in electrical and electronic equipment were retrieved from European Union databases. The growing incorporation of electronics into daily life results in a global annual growth rate of 3–4% for e-waste, of which only 17.4% is collected for recycling. E-waste microplastics are frequently found in soils near disposal or disassembly facilities, potentially leaching hazardous metals (e.g., Pb) or organic compounds (e.g., flame retardants). These microplastics contaminate the food chain and can have adverse effects on the soil and gut microbiome, organisms, and human health, either independently or associated with other chemicals. Responses include the implementation of regulations, improvement of waste management systems, and mitigation measures. Despite these concerns, the literature on the topic remains limited, emphasizing the need for additional research on the identification of e-waste microplastics and their toxicity.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3