COMSOL Modeling of Heat Transfer in SVE Process

Author:

Shi Yan,Rui Shuwang,Xu ShaofengORCID,Wang Na,Wang YixuanORCID

Abstract

Non aqueous phase liquid (NAPL) pollution exists in porous media such as soil. SVE technology can be used to remove this pollution in soil. However, few domestic and international studies have paid attention to the changes of soil temperature in the field, which we believe can be useful information to optimize the layout of heating wells. In this research we established partial differential equations of soil heat transfer using the COMSOL multi-field coupling tool to simulate the field distribution of the change in soil internal temperature in the process of SVE to obtain the change of effective heating area with time under certain initial heating conditions. At the same time, we used liquid ethylbenzene to represent NAPL pollutants, and designed a simulation of soil temperature field distribution under the movement of liquid ethylbenzene under external pressure. It was found that under the action of Darcy’s velocity field, the utilization efficiency of the SVE system for the heat source was significantly improved, that is, the temperature distribution of the soil was more uniform. However, the temperature of the heated area increased slowly because the extraction well took away the heat energy. The heat source power should be increased or prolonged to improve the effect of Darcy’s field. Through a coupled simulation, we obtained a variation relationship of the soil temperature field in 1800 min under the action of one extraction well and four heating wells. These data will provide the basis for our next step in designing an algorithm to optimize the distribution of heating wells.

Funder

Youth Fund of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3