Characterizing the Spatial Distribution of Eragrostis Curvula (Weeping Lovegrass) in New Jersey (United States of America) Using Logistic Regression

Author:

Ngoy Kikombo Ilunga,Shebitz Daniela

Abstract

The increasing spread of invasive plants has become a critical driver of global environmental change. Once established, invasive species are often impossible to eradicate. Therefore, predicting the spread has become a key element in fighting invasive species. In this study, we examined the efficiency of a logistic regression model as a tool to identify the spatial occurrence of an invasive plant species. We used Eragrostis curvula (Weeping Lovegrass) as the dependent variable. The independent variables included temperature, precipitation, soil types, and the road network. We randomly selected 68 georeferenced points to test the goodness of fit of the logistic regression model to predict the presence of E. curvula. We validated the model by selecting an additional 68 random points. Results showed that the probability to successfully predict the presence of E. Curvula was 82.35%. The overall predictive accuracy of the model for the presence or absence of E. Curvula was 80.88%. Additional tests including the Chi-square test, the Hosmer–Lemeshow (HL) test, and the area under the curve (AUC) values, all indicated that the model was the best fit. Our results showed that E. curvula was associated with the identified variables. This study suggests that the logistic regression model can be a useful tool in the identification of invasive species in New Jersey.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3