Understanding the Accuracy Limitations of Quantifying Methane Emissions Using Other Test Method 33A

Author:

Heltzel Robert,Johnson DerekORCID,Zaki Mohammed,Gebreslase AronORCID,Abdul-Aziz Omar I.ORCID

Abstract

Researchers have utilized Other Test Method (OTM) 33A to quantify methane emissions from natural gas infrastructure. Historically, errors have been reported based on a population of measurements compared to known controlled releases of methane. These errors have been reported as 2σ errors of ±70%. However, little research has been performed on the minimum attainable uncertainty of any one measurement. We present two methods of uncertainty estimation. The first was the measurement uncertainty of the state-of-the-art equipment, which was determined to be ±3.8% of the estimate. This was determined from bootstrapped measurements compared to controlled releases. The second approach of uncertainty estimation was a modified Hollinger and Richardson (H&R) method which was developed for quantifying the uncertainty of eddy covariance measurements. Using a modified version of this method applied to OTM 33A measurements, it was determined that uncertainty of any given measurement was ±17%. Combining measurement uncertainty with that of stochasticity produced a total minimum uncertainty of 17.4%. Due to the current nature of stationary single-sensor measurements and the stochasticity of atmospheric data, such uncertainties will always be present. This is critical in understanding the transport of methane emissions and indirect measurements obtained from the natural gas industry.

Funder

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Department of Energy

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3