Aquatic Bacterial Community Connectivity: The Effect of Hydrological Flow on Community Diversity and Composition

Author:

Sadeghi Javad1ORCID,Venney Clare J.1,Wright Shelby1,Watkins James1,Manning Dana1,Bai Edel1,Frank Chelsea1,Heath Daniel D.12

Affiliation:

1. Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada

2. Department of Integrative Biology, University of Windsor, Windsor, ON N9B 3P4, Canada

Abstract

Microbial communities are vital components of freshwater ecosystems due to their role in nutrient cycling and energy flow; however, the mechanisms driving their variation are still being explored. In aquatic systems, water flow (hydrology) can impact microbial community composition through community connectivity; however, the details of hydrology’s effects on microbial connectivity remain unclear. To address this question, we used 16S rRNA metabarcoding to determine bacterial community composition and connectivity across flow transects in three connected Great Lakes waterbodies with very different water-flow regimes: the Little River (high flow), the Detroit River (moderate flow), and Lake Erie (low flow). Bacterial alpha diversity (Chao1) did not differ among the three locations or sample sites along the transects. Analyses of beta diversity using community dissimilarity matrices identified significant differences among the three locations and among sample sites within locations. Bacterial community connectivity varied among the three locations, with a significant distance–decay relationship observed only in the low-flow location, which is indicative of connectivity driven by spatial proximity. Directional analyses showed that the water-flow direction affected bacterial similarity, consistent with the expected hydrological effects on community connectivity and previous published work. Our results indicate that (1) microbial community composition varies within and among even geographically close sampling locations and (2) the specific water-flow regime appears to affect bacterial community connectivity. Including hydrology in models of bacterial community composition will improve our understanding of the relative roles of selection versus stochastic effects on bacterial community diversity and composition in freshwater ecosystems.

Funder

Natural Science and Engineering Research Council of Canada

Department of Integrative Biology, University of Windsor

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3