Integrating Wastewater-Based Epidemiology and Mobility Data to Predict SARS-CoV-2 Cases

Author:

Schenk Hannes1ORCID,Arabzadeh Rezgar2,Dabiri Soroush1ORCID,Insam Heribert3ORCID,Kreuzinger Norbert4,Büchel-Marxer Monika5,Markt Rudolf3,Nägele Fabiana3,Rauch Wolfgang1ORCID

Affiliation:

1. Unit of Environmental Engineering, University of Innsbruck, 6020 Innsbruck, Austria

2. Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

3. Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria

4. Institute of Water Quality and Resource Management at TU Wien, 1040 Vienna, Austria

5. Ministry of Social Affairs and Culture, Liechtenstein, 9490 Vaduz

Abstract

Wastewater-based epidemiology has garnered considerable research interest, concerning the COVID-19 pandemic. Restrictive public health interventions and mobility limitations are measures to avert a rising case prevalence. The current study integrates WBE monitoring strategies, Google mobility data, and restriction information to assess the epidemiological development of COVID-19. Various SARIMAX models were employed to predict SARS-CoV-2 cases in Liechtenstein and two Austrian regions. This study analyzes four primary strategies for examining the progression of the pandemic waves, described as follows: 1—a univariate model based on active cases; 2—a multivariate model incorporating active cases and WBE data; 3—a multivariate model considering active cases and mobility data; and 4—a sensitivity analysis of WBE and mobility data incorporating restriction policies. Our key discovery reveals that, while WBE for SARS-CoV-2 holds immense potential for monitoring COVID-19 on a societal level, incorporating the analysis of mobility data and restriction policies enhances the precision of the trained models in predicting the state of public health during the pandemic.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3