The Diatomic Diversity of Two Mediterranean High-Elevation Lakes in the Sibillini Mountains National Park (Central Italy)

Author:

Padula RosalbaORCID,Carosi AntonellaORCID,Rossetti Alessandro,Lorenzoni MassimoORCID

Abstract

Temporary high-elevation lakes represent vulnerable and unstable environments strongly threatened by tourism, hydrogeological transformations and climate changes. In-depth scientific knowledge on these peculiar habitats is needed, on which to base integrated and sustainable management plans. Freshwater diatoms, thanks to their high diversity and their particular sensitivity to the water chemistry, can be considered powerful ecological indicators, as they are able to reflect environmental changes over time. The aim of the present study was to analyze the diatomic diversity of the Pilato and Palazzo Borghese lakes, two small temporary high-mountain basins, falling in a protected area within the Apennine mountains chain (central Italy). Diatoms data were collected, at the same time as 12 physicochemical parameters, through six microhabitat samplings, from 17 June to 30 August 2019. In both lakes, a total of 111 diatomic species and varieties were identified. The most species-rich genera were Gomphonema, Navicula, and Nitzschia. The Pilato Lake showed a diatomic community dominated by few species, favored by more stable and predictable environmental conditions than the Palazzo Borghese Lake, which hosted a more diversified community, guaranteed by greater spatial and temporal heterogeneity. Both lakes were characterized by the presence of diatomic species typical of good quality waters. The occurrence of numerous aerial species reflected adaptation strategies adopted to colonize environments subjected to extended drought periods. Endangered diatomic species of particular conservational interest were recorded, confirming the need to preserve their habitats.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3