Heterogeneous Activation of Persulfate by Nickel Oxide/Strontium Carbonate Composite for Sulfamethoxazole Degradation in Water

Author:

Skempi Despoina Jessica1,Kouvelis Konstantinos1,Petala Athanasia2,Bampos Georgios1ORCID,Frontistis Zacharias3

Affiliation:

1. Department of Chemical Engineering, University of Patras, GR-26504 Patras, Greece

2. Department of Environment, Ionian University, GR-29100 Zakynthos, Greece

3. Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece

Abstract

The development of efficient heterogeneous persulfate activators is one of the main research topics in the wastewater treatment area. The present work deals with the heterogeneous activation of sodium persulfate (SPS) using nickel oxide/strontium carbonate (NiO/SrCO3) for the degradation of sulfamethoxazole (SMX), a representative compound from the group of antibiotics. Results showed that NiO/SrCO3 exhibited high performance towards the activation of SPS, leading to SMX elimination in brief time spans. The impact of SPS (25–100 mg/L), NiO/SrCO3 (50–250 mg/L), and SMX (0.25–3.00 mg/L) concentration, and initial pH on the decomposition of SMX was further examined. Experiments were also conducted in real matrices such as secondary effluent and bottled water, revealing the existence of retarding phenomena compared to ultrapure water. This behavior was further investigated with the addition of bicarbonates, chlorides, or humic acid in ultrapure water. It was found that organic matter significantly hampered SMX removal. The role of the main radicals (hydroxyl and sulfate radicals) was determined using appropriate radical traps (methanol and tert-butanol). These quenching experiments combined with the conducted electrochemical measurements revealed that both a radical and a non-radical mechanism contribute to the decomposition of SMX.

Funder

Development of New Innovative Low Carbon Footprint Energy Technologies to Enhance Excellence in the Region of Western Macedonia

Greece and the European Union

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3