Environmental Temperature Effect on Hydraulic Behavior and Stability of Shallow Slopes

Author:

Yang Shu-Rong1ORCID,Chang Rui-En2,Yang Ya-Sin2ORCID,Yeh Hsin-Fu2ORCID

Affiliation:

1. Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan

2. Department of Resources Engineering, National Cheng Kung University, Tainan 701, Taiwan

Abstract

This study established a study framework to quantify the safety factors of unsaturated shallow slopes at different temperatures. This study is based on a non-isothermal soil water characteristic curve model quantifying the temperature-dependent hydraulic properties of soils. The hydraulic coupling analysis models HYDRUS 2D and The Slope Cube Module were used for finite element modeling. A slope stability analysis was performed based on the local factor of safety (LFS) theory. An increased temperature decreased the soil matric suction, suction stress, effective stress, and LFS, weakening the soil strength. Slope modeling analysis showed that soils were dominated by different water retention mechanisms before and after rainfall infiltration, and the trends caused by temperature changes also changed accordingly. This study provides insights into the relationship between soil mechanical properties and temperature, which is valuable for maintaining soil stability and preventing geological hazards.

Publisher

MDPI AG

Subject

General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3