Portfolio Optimization with Sector Return Prediction Models

Author:

Bessler Wolfgang1,Wolff Dominik234

Affiliation:

1. Faculty of Business Administration, University of Hamburg, 20148 Hamburg, Germany

2. Department of Business and Law, Frankfurt University of Applied Sciences, 60318 Frankfurt am Main, Germany

3. Department of Business Administration, Economics and Law, Technical University Darmstadt, 64289 Darmstadt, Germany

4. Deka Investment GmbH, 60439 Frankfurt, Germany

Abstract

We analyze return predictability for U.S. sectors based on fundamental, macroeconomic, and technical indicators and analyze whether return predictions improve tactical asset allocation decisions. We study the out-of-sample predictive power of individual variables for forecasting sector returns and analyze multivariate predictive regression models, including OLS, regularized regressions, principal component regressions, the three-pass regression filter, and forecast combinations. Using an out-of-sample Black–Litterman portfolio optimization framework and employing predicted returns as investors’ ‘views’, we evaluate the benefits of sector return forecasts for investors. We find that portfolio optimization with sector return prediction models significantly outperforms portfolios using historical averages as well as passive benchmark portfolios.

Publisher

MDPI AG

Reference89 articles.

1. Does Inventory Productivity Predict Future Stock Returns? A Retailing Industry Perspective;Alan;Management Science,2014

2. Multiple-Predictor Regressions: Hypothesis Testing;Amihud;The Review of Financial Studies,2009

3. Stock return predictability: Is it there?;Ang;Review of Financial Studies,2007

4. Equity Trading in the 21st Century;Angel;Quarterly Journal of Finance,2011

5. Averaging and the optimal combination of forecasts;Bates;Operational Research Quarterly,1969

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3