A Clinical Approach to Semiautomated Three-Dimensional Fetal Brain Biometry—Comparing the Strengths and Weaknesses of Two Diagnostic Tools: 5DCNS+TM and SonoCNSTM

Author:

Gembicki Michael1ORCID,Welp Amrei1,Scharf Jann Lennard1ORCID,Dracopoulos Christoph1,Weichert Jan1ORCID

Affiliation:

1. Department of Gynecology & Obstetrics, Division of Prenatal Medicine, University Hospital of Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany

Abstract

(1) Objective: We aimed to evaluate the accuracy and efficacy of AI-assisted biometric measurements of the fetal central nervous system (CNS) by comparing two semiautomatic postprocessing tools. We further aimed to discuss the additional value of semiautomatically generated sagittal and coronal planes of the CNS. (2) Methods: Three-dimensional (3D) volumes were analyzed with two semiautomatic software tools, 5DCNS+™ and SonoCNS™. The application of 5DCNS+™ results in nine planes (axial, coronal and sagittal) displayed in a single template; SonoCNS™ depicts three axial cutting sections. The tools were compared regarding automatic biometric measurement accuracy. (3) Results: A total of 129 fetuses were included for final analysis. Our data indicate that, in terms of the biometric quantification of head circumference (HC), biparietal diameter (BPD), transcerebellar diameter (TCD) and cisterna magna (CM), the accuracy of SonoCNS™ was higher with respect to the manual measurement of an experienced examiner compared to 5DCNS+™, whereas it was the other way around regarding the diameter of the posterior horn of the lateral ventricle (Vp). The inclusion of four orthogonal coronal views in 5DCNS+™ gives valuable information regarding spatial arrangements, particularly of midline structures. (4) Conclusions: Both tools were able to ease assessment of the intracranial anatomy, highlighting the additional value of automated algorithms in clinical use. SonoCNS™ showed a superior accuracy of plane reconstruction and biometry, but volume reconstruction using 5DCNS+™ provided more detailed information, which is needed for an entire neurosonogram as suggested by international guidelines.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fetal Ultrasound Brain Biometry: An Integrated Deep Learning Framework;2024 IEEE South Asian Ultrasonics Symposium (SAUS);2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3