Insights from Explainable Artificial Intelligence of Pollution and Socioeconomic Influences for Respiratory Cancer Mortality in Italy

Author:

Romano Donato12ORCID,Novielli Pierfrancesco12,Diacono Domenico2ORCID,Cilli Roberto23ORCID,Pantaleo Ester23ORCID,Amoroso Nicola24ORCID,Bellantuono Loredana25,Monaco Alfonso23,Bellotti Roberto23,Tangaro Sabina12ORCID

Affiliation:

1. Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy

2. Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari, Italy

3. Dipartimento Interateneo di Fisica “M. Merlin”, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy

4. Dipartimento di Farmacia Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy

5. Dipartimento di Biomedicina Traslazionale e Neuroscienze, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy

Abstract

Respiratory malignancies, encompassing cancers affecting the lungs, the trachea, and the bronchi, pose a significant and dynamic public health challenge. Given that air pollution stands as a significant contributor to the onset of these ailments, discerning the most detrimental agents becomes imperative for crafting policies aimed at mitigating exposure. This study advocates for the utilization of explainable artificial intelligence (XAI) methodologies, leveraging remote sensing data, to ascertain the primary influencers on the prediction of standard mortality rates (SMRs) attributable to respiratory cancer across Italian provinces, utilizing both environmental and socioeconomic data. By scrutinizing thirteen distinct machine learning algorithms, we endeavor to pinpoint the most accurate model for categorizing Italian provinces as either above or below the national average SMR value for respiratory cancer. Furthermore, employing XAI techniques, we delineate the salient factors crucial in predicting the two classes of SMR. Through our machine learning scrutiny, we illuminate the environmental and socioeconomic factors pertinent to mortality in this disease category, thereby offering a roadmap for prioritizing interventions aimed at mitigating risk factors.

Publisher

MDPI AG

Reference56 articles.

1. The exposome: From concept to utility;Wild;Int. J. Epidemiol.,2012

2. Sogno, P., Traidl-Hoffmann, C., and Kuenzer, C. (2020). Earth observation data supporting non-communicable disease research: A review. Remote Sens., 12.

3. United Nations Department of Economic and Social Affairs (2023). The Sustainable Development Goals Report 2023: Special Edition, United Nations Department of Economic and Social Affairs.

4. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;Bray;CA Cancer J. Clin.,2018

5. Implementing precision medicine in best practices of chronic airway diseases;Mahesh;Indian J. Med. Res.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3