Laplacian Eigenmaps Dimensionality Reduction Based on Clustering-Adjusted Similarity

Author:

Zhou Honghu,Wang Jun

Abstract

Euclidean distance between instances is widely used to capture the manifold structure of data and for graph-based dimensionality reduction. However, in some circumstances, the basic Euclidean distance cannot accurately capture the similarity between instances; some instances from different classes but close to the decision boundary may be close to each other, which may mislead the graph-based dimensionality reduction and compromise the performance. To mitigate this issue, in this paper, we proposed an approach called Laplacian Eigenmaps based on Clustering-Adjusted Similarity (LE-CAS). LE-CAS first performs clustering on all instances to explore the global structure and discrimination of instances, and quantifies the similarity between cluster centers. Then, it adjusts the similarity between pairwise instances by multiplying the similarity between centers of clusters, which these two instances respectively belong to. In this way, if two instances are from different clusters, the similarity between them is reduced; otherwise, it is unchanged. Finally, LE-CAS performs graph-based dimensionality reduction (via Laplacian Eigenmaps) based on the adjusted similarity. We conducted comprehensive empirical studies on UCI datasets and show that LE-CAS not only has a better performance than other relevant comparing methods, but also is more robust to input parameters.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3